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Introduction

• Kaldi’s new state-of-the-art hybrid approach
(HMM-DNN) for ASR acoustic modeling has
been successfully applied to many languages

– English, German, Spanish, Italian, Arabic, . . .

• Brazilian Portuguese (BP): the FalaBrasil group
stands out in LVCSR using CMU Sphinx and
HTK toolkits, however with HMM-GMM only

Problem

• Related works lack of solutions for BP using
deep-learning techniques for LVCSR

• Apparently, no previous work has attempted
to develop an HMM-DNN hybrid recipe for
Brazilian Portuguese using Kaldi tools [1]

Solution

• A recipe adapted from the WSJ scripts is now
publicly available at FalaBrasil group’s GitLab
repo (https://gitlab.com/falabrasil)

Building ASR Systems for BP

• Comparison between Kaldi and CMU Sphinx

• Audio corpora: ≈ 171h, 16 kHz mono WAV

• Language model: 3-gram trained with SRILM
over CETENFolha text corpora (pp. ≈ 170)

• Phonetic dictionary: FalaBrasil’s G2P software

Kaldi’s Hybrid HMM-DNN Acoustic Model Training Pipeline

Experimental Tests Setup

• Tied-states (leaves or senones): 500 up to 8,000

• Gaussians per mixture (densities): 2 up to 16

• HMM-GMM triphone-based AMs were trained
with both Kaldi and CMU Sphinx toolkits

• Re-estimation: CMU Sphinx uses Baum-Welch
algorithm while Kaldi performs Viterbi training
(which includes Viterbi alignment at each step)

• HMM-DNN hybrid model was trained on the top
of Kaldi’s best HMM-GMM model

• Hardware: HP EliteDesk 800 with Intel® Core™

i5-4570 CPU, 8 GB RAM and 1 TB disk storage

DNN Tools and Parameters

Tool or Param. Value

DNN codebase nnet2 (“Dan’s DNN”)

Script train_pnorm_fast.sh

Hidden layers 2

Activation function p_norm

pnorm_output_dim 3,000

pnorm_input_dim 300

num_epochs 8

num_epochs_extra 5

Minibatch size 512

Learning rate 0.02 down to 0.004

Word Error Rate (WER) Results: Tied-states vs. Gaussians
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Conclusions

• CMU Sphinx loses to Kaldi in WER even when
comparing HMM-GMM models only, probably
because of different re-estimation procedures
(Baum-Welch vs. Viterbi)

• 57.21% improvement showed by Kaldi’s
HMM-DNN acoustic model over the best CMU
Sphinx’s HMM-GMM model
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